Ruthenium

Visible Light Photoinitiator for 3D Hydrogels and Bioinks

Ruthenium uses visible light (400-450nm) wavelength to photocrosslink biomaterials, in order to tune the mechanical properties of the substrate.

Ruthenium will allow visible light to covalently crosslink free tyrosines and acryl groups! This means Ruthenium can crosslink a wide range of materials.

As a water soluble visible light photoinitiator, Ruthenium is easy, efficient, and cell friendly.

Catalog #5248-1KIT

The Ruthenium kit provides enough photoinitiator for >200 mL of bioinks/hydrogels. 

Results showed that increasing visible light intensity from 3-100 mW/cm2 did not significantly decrease cell viability!

Further testing showed that increasing Ruthenium concentration by 10 times did not decrease cell viability.

Materials we've tested so far with Ruthenium:

Type I Collagen (unmodified)

Silk Fibroin

Gelatin (unmodified)

Methacrylated Type I Collagen

Methacrylated Gelatin

Methacrylated Hyaluronic Acid

PEGDA

Fibrinogen

No more harmful UV light affecting your cells

X

Cells Tested in Hydrogels Photocrosslinked using Ruthenium as the Photoinitiator:

Human mesenchymal stromal cells (hMSC)

Human articular chondrocytes (HAC)

Human nasal chondrocytes (HNC)

Human umbilical vein endothelial cells (HUVEC)

Human endothelial colony forming cells (ECFC)

Human neonatal fibroblasts (HNF)

Human breast adenocarcinoma cells (MCF7, MDA-MB-231)

Human breast ductal carcinoma cells (HCC1954)

Human ovarian adenocarcinoma cells (SKOV3)

Human mature adipocytes

Human adipose derived stem cells (hASC)

Human annulus fibrosus cells (HAF)

Human induced neural progenitor cells

Bovine articular chondrocytes

Equine articular chondrocytes

Equine chondroprogenitor cells

Porcine articular chondrocytes

Murine cardiac myocytes (HL1)

Murine pheochromocytoma cells (PC12)

Murine teratocarcinoma cells (ATDC5)

Murine breast adenocarcinoma cells (EO771)

MSC
HUVEC/MSC
Fibroblast

Images and cell studies provided and performed by University of Otago

References:

Lim, Khoon S., et al. "New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks." ACS Biomaterials Science & Engineering 2.10 (2016): 1752-1762.

 

Parker, J. D., Lim, K. S., Kieser, D. C., Woodfield, T. B. F., & Hooper, G. J. (2018). Is tranexamic acid toxic to articular cartilage when administered topically? What is the safe dose? Bone & Joint Journal, 100-B(3), 404-412. doi: 10.1302/0301-620X.100B3.BJJ-2017-1135.R1

 

Lim, K. S., Levato, R., Costa, P. F., Castilho, M. D., Alcala-Orozco, C. R., van Dorenmalen, K. M. A., … Hooper, G. J., … Woodfield, T. B. F. (2018). Bio-resin for high resolution lithography-based biofabrication of complex cell laden constructs. Biofabrication, 10, 034101. doi: 10.1088/1758-5090/aac00c

Bertlein, S., Brown, G., Lim, K. S., Jungst, T., Boeck, T., Blunk, T., … Hooper, G. J., Woodfield, T. B. F., & Groll, J. (2017). Thiol-ene clickable gelatin: A platform bioink for multiple 3D biofabrication technologies. Advanced Materials, 29(44), 1703404. doi: 10.1002/adma.201703404

 

Mekhileri, N. V., Lim, K. S., Brown, G. C. J., Mutreja, I., Schon, B. S., Hooper, G. J., & Woodfield, T. B. F. (2017). Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication. Advance online publication. doi: 10.1088/1758-5090/aa9ef1

 

Lim, K. S., Ramaswamy, Y., Roberts, J. J., Alves, M.-H., Poole-Warren, L. A., & Martens, P. J. (2015). Promoting cell survival and proliferation in degradable poly(vinyl alcohol)-tyramine hydrogels. Macromolecular Bioscience, 15(10), 1423-1432. doi: 10.1002/mabi.201500121

 

Lim, K. S., Alves, M. H., Poole-Warren, L. A., & Martens, P. J. (2013). Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels. Biomaterials,34(29), 7097-7105. doi: 10.1016/j.biomaterials.2013.06.005

 

Green, R. A., Lim, K. S., Henderson, W. C., Hassarati, R. T., Martens, P. J., Lovell, N. H., & Poole-Warren, L. A. (2013). Living electrodes: Tissue engineering in the neural interface.Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). (pp. 6957-6960). IEEE. doi: 10.1109/EMBC.2013.6611158

Follow us on LinkedIn for company updates, product releases and free giveaways!